3.2.30 \(\int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [130]

3.2.30.1 Optimal result
3.2.30.2 Mathematica [A] (verified)
3.2.30.3 Rubi [A] (verified)
3.2.30.4 Maple [A] (verified)
3.2.30.5 Fricas [C] (verification not implemented)
3.2.30.6 Sympy [F]
3.2.30.7 Maxima [F]
3.2.30.8 Giac [F]
3.2.30.9 Mupad [F(-1)]

3.2.30.1 Optimal result

Integrand size = 25, antiderivative size = 174 \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {(a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \]

output
-cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f-EllipticE(sin(f*x+e),(-b/a)^(1/2))* 
sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+e) 
^2/a)^(1/2)+(a+b)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e 
)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)
 
3.2.30.2 Mathematica [A] (verified)

Time = 0.58 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.79 \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {-\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \cot (e+f x)-2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )}{2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]
 
output
(-(Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Cot[e + f*x]) - 2*a*Sqrt[(2*a + 
b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 2*(a + b)*Sqrt[(2* 
a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)])/(2*f*Sqrt[2*a + 
 b - b*Cos[2*(e + f*x)]])
 
3.2.30.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3667, 377, 27, 326, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin (e+f x)^2}}{\sin (e+f x)^2}dx\)

\(\Big \downarrow \) 3667

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\csc ^2(e+f x) \sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 377

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\int \frac {b \sqrt {1-\sin ^2(e+f x)}}{\sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \int \frac {\sqrt {1-\sin ^2(e+f x)}}{\sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 326

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {(a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {(a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {(a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {(a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}\right )-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {(a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}\right )-\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

input
Int[Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(-(Csc[e + f*x]*Sqrt[1 - Sin[e + f*x]^2 
]*Sqrt[a + b*Sin[e + f*x]^2]) + b*(-((EllipticE[ArcSin[Sin[e + f*x]], -(b/ 
a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + ((a 
+ b)*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a 
])/(b*Sqrt[a + b*Sin[e + f*x]^2]))))/f
 

3.2.30.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 326
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
b/d   Int[Sqrt[c + d*x^2]/Sqrt[a + b*x^2], x], x] - Simp[(b*c - a*d)/d   In 
t[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && 
PosQ[d/c] && NegQ[b/a]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 377
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(a*e*( 
m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[b*c*(m + 1) + 2*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) 
+ 2*b*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b 
*c - a*d, 0] && LtQ[0, q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m 
, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3667
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, 
p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.2.30.4 Maple [A] (verified)

Time = 1.80 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.90

method result size
default \(\frac {b \left (\cos ^{4}\left (f x +e \right )\right )+\left (-a -b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \left (F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \right )}{\sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(156\)

input
int(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
(b*cos(f*x+e)^4+(-a-b)*cos(f*x+e)^2+sin(f*x+e)*(cos(f*x+e)^2)^(1/2)*(-b/a* 
cos(f*x+e)^2+(a+b)/a)^(1/2)*(EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a+Ellipt 
icF(sin(f*x+e),(-1/a*b)^(1/2))*b-EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a))/ 
sin(f*x+e)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.2.30.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 626, normalized size of antiderivative = 3.60 \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {2 \, {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) \sin \left (f x + e\right ) + 2 \, {\left (2 i \, a + i \, b\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) \sin \left (f x + e\right ) + 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b \cos \left (f x + e\right ) + {\left (2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (2 i \, a + i \, b\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (-2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}})}{2 \, b f \sin \left (f x + e\right )} \]

input
integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
-1/2*(2*(-2*I*a - I*b)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b) 
/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f 
*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a 
^2 + a*b)/b^2))/b^2)*sin(f*x + e) + 2*(2*I*a + I*b)*sqrt(-b)*sqrt((2*b*sqr 
t((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a 
*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + 
b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2)*sin(f*x + e) + 2*sqrt(-b 
*cos(f*x + e)^2 + a + b)*b*cos(f*x + e) + (2*I*sqrt(-b)*b*sqrt((a^2 + a*b) 
/b^2)*sin(f*x + e) + (2*I*a + I*b)*sqrt(-b)*sin(f*x + e))*sqrt((2*b*sqrt(( 
a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b) 
/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 
 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (-2*I*sqrt(-b)*b*sqrt((a^ 
2 + a*b)/b^2)*sin(f*x + e) + (-2*I*a - I*b)*sqrt(-b)*sin(f*x + e))*sqrt((2 
*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a 
^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8* 
a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2))/(b*f*sin(f*x + e) 
)
 
3.2.30.6 Sympy [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \csc ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(csc(f*x+e)**2*(a+b*sin(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*sin(e + f*x)**2)*csc(e + f*x)**2, x)
 
3.2.30.7 Maxima [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{2} \,d x } \]

input
integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*csc(f*x + e)^2, x)
 
3.2.30.8 Giac [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{2} \,d x } \]

input
integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*csc(f*x + e)^2, x)
 
3.2.30.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

input
int((a + b*sin(e + f*x)^2)^(1/2)/sin(e + f*x)^2,x)
 
output
int((a + b*sin(e + f*x)^2)^(1/2)/sin(e + f*x)^2, x)